Solution Sheet 6
Exercise 6.1

Let 0 < a < 3 < 1. Prove that C%% compactly embeds into C%2.

Proof. Letting (f,) be a bounded sequence in C?, we must show that there exists a subsequence
(fn,) which is convergent in C*. We identify the subsequence via the Arzeld-Ascoli Theorem, as
each f, is uniformly continuous, we can continuously extend to the closure of its domain such that
the extended function is again uniformly continuous. Deducing pointwise uniform boundedness
and equicontinuity out of the uniform boundedness in C?, we can apply Arzeld-Ascoli to deduce
the existence of a uniformly convergent subsequence (fy, ). We demonstrate convergence in C* by
showing that the sequence is Cauchy; we employ the inequality shown in the lecture notes,
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using in the second inequality the uniform boundedness in C?. The Cauchy property thus follows

from the Cauchy property in supremum norm, concluding the result.
O

Exercise 6.2

Let 0 < o < 1. Give an example of a function f such that f € C* however f ¢ C? for all
a< <l
Proof. Our example is f: (0,1) = R, f(x) =z Then f € C* as

[f(w) = F)] _ Ju® =
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To prove that f ¢ C take u = v + ¢, then
[flw) = fv)] _ (v42e)* =0
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which explodes as ¢ — 0. O

Exercise 6.3

Suppose that f is uniformly continuous. Does there exist an a > 0 such that f € C*?

Proof. Yes, consider f:[0,3] = R, f(z) = @ if x > 0 and f(0) = 0, which is continuous hence

uniformly continuous. However, it cannot belong to C“: considering v = 0,

log(u)
ua

which explodes as u — 0. ]

Exercise 6.4

Let W be a standard real-valued Brownian Motion on [0, 1], and o > % Prove that for P —a.e.
w, W(w) ¢ C«.



Proof. We use that W has two-variation equal to ¢, or more precisely that for partitions A™ : 0 =
ty <tp <<ty . =tof [0,¢] with mesh [A"[ — 0, then for I’ — a.e. w, the sequence (Ty,(w))
defined by

My,
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has a convergent subsequence to ¢t. We now assume for a contradiction that W (w) € C* for a > %,
Wi, (w) — Wi (w)‘ < C(w)[t,, — [, Then

in particular
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as 2a — 1 > 0, contradicting the convergent subsequence to ¢.

Exercise 6.5

Let B be a Fractional Brownian Motion on [0, 7] with Hurst exponent H € (0, 1]. Prove that
for a given o < H, there exists a modification BM of BM such that for P — a.e. w, BM(w) € C°.

Proof. The idea is, unsurprisingly, to apply the Kolmogorov Continuity Theorem. Due to the
stationary increments and H —self-similarity of B,

B (B — BEP) < B (B |t - sp"
and in the notation of the Kolmogorov Continuity Theorem,
1B = Bl < 1B [lplt — |

Thus for p sufficiently large H > %, hence BY admits a modification in C” for every v < H — %,

and in particular in C* for p large enough such that o < H — %.

O]

Exercise 6.6
Prove that a real-valued stochastic process X with independent increments is a Markov Process.
Proof. 1t is sufficient to show that, for every bounded measurable f : R — R,
E (f(X)|Fs) = E (f(X0)|Xs)
(in fact, this is equivalent to the Markov Property). We rewrite

f(Xt) = f(Xt - Xs + Xs) = g(Xt - XSaXs)



where g(u,v) = f(u+ v). Thus
B (f(X)|Fs) = B (9(Xi — X5, Xo)|Fs) = B (9(X; — X, Xo)[ Xs) = E (f(X0)[X5)

having used that X; — X is independent of Fs, and that X, is measurable with respect to Fg, in
the middle step. O

Exercise 6.7

Let (e;) be an orthonormal system of a separable Hilbert Space H, ()\;) a sequence of summable
positive constants, and (Bf") a sequence of real-valued i.i.d, fractional Brownian Motions with
Hurst exponent H on [0, T]. Define, for each n € N and t € [0, 7],

n
X ="V e B
=1

1. Show that for each t € [0,T], (X*) converges to some (X;) in L?(Q; H).
2. Prove that the process X defined in the previous part is Gaussian.

3. Prove that for a given o < H, there exists a modification X of X such that for P — a.e. w,
X (w) € C*([0,T); H). You are given that the notion of Holder Continuity and Kolmogorov’s
Continuity Theorem both extend to H, as well as the Kahane-Khintchine Inequality which
states that for Y an H—valued Gaussian random variable, for all 1 < p, q < oo,

[ ([Y[7)]7 < cpg [E (YD)

Proof.
1. We argue that the sequence is Cauchy, as

E (| X7 - X% :IE< Z /\i|Bf{’i]2> =E (|BI]?) t*" Z i

i=m+1 i=m+1

which is Cauchy as the ()\;) are summable.

2. We must prove that the finite dimensional distributions of X are Gaussian measures on H.
That is to say for every h € H we must show that the finite dimensional distributions of
(X,h) are Gaussian measures on R. Fixing any collection of time points t; < --- < g,
note that the R%valued random variable ((Xy,,h),..., (X, h)) is the L*(Q;RY) limit of
(X7, h),..., (X[, h)) by using Cauchy-Schwarz to see that
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and the previous part. Note that
n
(X7 h) =/ Nilei, by BT
i=1

is a Gaussian process as the sum of independent Gaussian processes, hence ((X3,, h), ..., (X, h))
is the L2(€; R?) limit of an R%valued Gaussian random variable. Thus by Lemma 2.5.2, as
convergence in L? implies convergence in distribution, ((X,,h), ..., (Xy,, h)) is Gaussian as
required.



3. Using the given Kahane-Khintchine Inequality for any p > 1, combined with the previous two
parts,

[E (11X, — X.[P))F < 2 [B (X, — X[1%)]
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The result now follows exactly as in Exercise 6.5.



